Application Integration
Registrar (AIR)

Developer guide

Mohamed Roshan

Contents

1. Introduction to AIRS --------=========—m-mmmmmm oo 03
2. Concept of AIR -----=========m= oo 04
3. What are the main components? ---------=--=--—--mmomommoomoe 06
4. How to implement? ----—---------"""oro - 07
5. Steps to setup a function as called app function ------------------ 08
6. Calling application setup for calling app developer ------------- - 10
7. How to handle multiple calling app functions in a

calling application ---------==-- - 13
8. Troubleshooting =-======--ccmmmmee e eeeeee 15
9. Error handling code setup -------====-==——- - mmmmm e 16
10. AIR Error codes —---=-====m=mmmmmm oo 17
11. About function get_related_ar_links ------====----mmmmmmmcemeeeee 19

12. How to create share_function.xml feed ---------====--ccccmmmmnua- 20

Application Integration Registrar (AIR) developer guide.
1. Introduction to AIR

Application Integration Registrar or AIR, simply is an access control system to
other Ekwa internal applications. There are some principle similarities to Ekwa
UAACS. But the difference is AIR only controls communications and related access
between applications.

What this means is if an application, for example app A wants to communicate
with app B in order for it to carry out a task on behalf of app B. Under normal
conditions such an event can be carried out only if both apps A and B are built
with code to carry out requests made by each other. The developers of both apps
need to communicate with each other and design and develop the required
modifications to the apps. Hence each integration requirement is built on a case
by case basis at the point of requirement.

Now Suppose if app A needs to communicate with another app, say app C,
developers will have to edit the code of both apps in order to make a connection
between the two.

Needless to say this kind of linking between two or more applications is time
consuming, not flexible and above all this is prone for errors which are hard to
debug.

With the implementation of AIR, developer has to do nothing but to create a
connection between two apps using the AIR application interface and then to use
a specific library which handles the required communication between the two
apps that need the integration. In this each integration between two or more
apps are properly recorded and registered in the AIR app. In other words no app
can access or execute code of other apps without getting through the access
control of AIR. The built-in library will ensure the verification of authenticity of the
integration request as well as log all access and executions for future verification
if the need be.

All request are defined with outcome status indicators and they are well
streamlined hence a developer only has to add 2 -3 lines of pre-defined codes
wherever appropriate

This approach is much more flexible, secure, easy to maintain and have more
control over the integrations.

2. Concept of AIR

The basic concept is that AIR will act like a middleman in between the
communication of two applications that needs to be integrated.

A communication between two apps can happen only if the connection are
defined in AIR.

At the point of defining the connection AIR needs detailed information about both
the apps to be integrated. Hence such details relating to the apps are defined by
the app developer in a predefined XML feed format. For example functions of the
app that could be used/accessed by other apps for integration and their
parameters, URL to access the app function,function method etc.

Once those data are given in AIR, developer has to use a specific library to
initiate the communication.

If we were to study the example given above,

Developer first has to define an integration for apps A & B(let's name it “"A -> B”)
in AIR where the app A is the calling/requesting application and app B is the
called/receiving application.

Now whenever app A wants to communicate with app B, app A has to obtain a
token from AIR for the defined integration A -> B.

To do this app A needs to incorporate and uses the library developed for this
propose.

Once AIR received a request from app A for a token, it checks whether any
information contains about app A in AIR database.

Since app A has already registered an integration, AIR proceeds and creates a
token and sends it to app A along with other application’s information such as app
B's function URL, parameters, etc.

Upon obtaining the token and the app B's function URL and parameters
information, app A now can call app B's required function directly with the token.

App B on the other end receives app A's call and the token.

App B first checks the URL request to see whether it's an internal app execution
call or an external AIR related call.

Once app B determined this call is from an external source, it then proceed to
verify the token from AIR with the help of AIR related library.

AIR receives token verification call from app B and takes appropriate steps to
verify the token and responds back to app B with token validity.

Upon receiving token validity response, app B either execute app A's call or
denies to do so. App B also receives data required for the app B’s login
environment settings in the same response.

This is how the communication take place between applications integrations when
implemented through AIR.

As intended it is very easy to implement though AIR does a load of work such as
UAACS checks associated with user who is using the app and all sort of other
check ups behind the seen.

3. What are the main components?

There are 4 main components involved when implementing AIR for app
integrations.

I.

II.

III.

IV.

AIR application
AIR application itself.

AI_Utilities.php lib

AI_Utilities.php library is what resides inside the application which intends
to communicate with other apps.

This library act as a slave component for AIR master.

Token requesting, token verification, processing responses from AIR is
happening in this component.

Calling application
This is the application which makes the call to execute a function in other
application (called application)

Called application
This is the application which receives the call from calling application.

4. How to implement?

To implement AIR, follow the exact steps described below in exact order.

setups to be done in both calling app and called app._Before making a connection
in AIR, Called app has to be set up first. This is a must

1. Identify called app's required function/method and add code segments in
appropriate locations. All those code segments are to be given and
explained in following sections.

2. Create the share function.xml file and put it on root folder of the called
app.

3. Make sure share function.xml of calling app is existing and make sure its
residing on root folder of calling app. If not ask calling app developer to
create one.

4. Add and load AR_Utilities.php class for both apps.

5 Define the integration in AIR. This process explained in step by step below.
Ensure you have the generated Integration Id ready when asked for.

6. Add code segments on calling app method in appropriate locations.

7. Handle error/status codes where appropriate as explained in foregoing
steps.

8. Test and debug

Pre-requisitions

1. Both calling and called applications must have UAACS access controlling
enabled.

2. Both calling and called apps must be equipped with share_function.xml
feed. To learn how to create one please refer 'How to create
share_function.xml feed' section.

3. Called app's method must have proper error handling. To learn how to do
this please refer 'Error handling code setup' section.

4,

Define AR_URL constant variable at config/constants.php file if your
application is a CI orelse define it in your application where it is
appropriate.

You need to give AIR application test URL as follows,
‘http://bizydads.com/appga/Al/Al/index.php/appregistrar/’ and live URL
As ‘http://kindersigns.org/AIR/index.php/appregistrar/’

(Note: do not forget to add '/’ at the end of the URL.)

5 Steps to setup a function as called app function (called function)

These steps should be done by called application developer (If the application is
generated through new CIGEN, then this step is already done for you). Once a
function is identified as an API function or shared function, developer should
follow each step given below,

1.

2.

Include AR_Utilities.php class in your CI app library folder if it's a CI app.
If the app is not CI based you can include it as a general include.

Declare following private properties in the Called Application’s controller
class if it is a CI app. Otherwise declare as global variables.

//AIR related vars

private $AIR call flag = false; // Use this flag to select appropriate output
private $debug = true;

private $AR_Utilities = null;

. After that add following code segment inside the constructor. This will

create an object which activates called app functions of AI_Utilities class.

// Load AIR Lib to check and configure settings/views if its an AIR related call
$this->load->library('AR_Utilities');

//Create AIR obj to act as called app

$this->AR_Utilities = new AR_Utilities("called_app");

if($this->AR_Utilities->validityStatus['validity'] == 'VALID'){
$this->AIR_call_flag = true;

}

The purpose of using $this->AIR _call_flag is to select which output to be
executed. If this flag is set to TRUE which means it is an external
call so handle it accordingly. If it is FALSE then proceed with normal
execution.

http://bizydads.com/appqa/AI/AI/index.php/appregistrar/
http://kindersigns.org/AIR/index.php/appregistrar/

validityStatus is an array property of AR_Utilities library. Which returns
'validity' key as '"VALID' or 'INVALID' string value.

If the key validity of validityStatus property returns 'INVALID' then it will
additionally returns 'errorCode' and 'error' keys with relevant data.

In some occasions when you need to output errors or messages you can use
AR_Utilities header_output() method.

header_output() is a AR_Utility method which accepts 2 parameters. First one
is a code. Which should be an integer value. The second one is a string value
which can be a string.

Ex:

$this->AR_Utilities->header_output(
$this->validityStatus['errorCode'],
$this->validityStatus['error']);

You can also send your own custom error messages and codes as follows,

$this->AR_Utilities->header_output(511, 'Token was not given!');

You should always use header_output() method If you want to return any
messages to calling app.

Ex:

if(empty($actual_start_date)){
$this->AR_Utilities->header_output(520, 'Actual Start Date cannot be empty');
exit;

telse if(empty($actual_end_date)){
$this->AR_Utilities->header_output(521, 'Actual End Date cannot be empty');
exit;

6 Calling application setup for calling app developer

1. Register an integration with AIR as follows,

1.1.

1.2.

1.3.

1.4.

1.5.

=
QN

1.10.

1.11.

1.12.

Click on 'Add' button on AIR toolbar to load 'Add New Application
Integration' form

Give a name to identify the integration for 'Integration Name' text
box

Select the calling application from 'Calling Application' drop down
menu

Give the path of calling application's share_functions.xml feed for
'Calling App XML URL' text box

As soon as you specify correct URL of 'share_function.xml' and
take out the courser from the text box, AIR creates a drop down
menu with specified functions from the XML file and shows at 'Calling
Application Function '

Select appropriate function from 'Calling Application Function'
Select 'Called application’

Give called application's share_function.xml URL. This would be
usually application root path.

Select application's called function from the drop down. This would
appear as soon as you specify the path of XML feed

Finally you have to give specific values for 'Function parameters and
query string data variables' section. This may different for each
application requirements. Called application's share_function.xml feed
will contain instructions on how to fill these section.

Press 'Save' button to save the connection.

Once the connection is added in AIR you would see it in AIR grid.
Integration Id is what you will need to remember for other steps.

2. In your calling application add AI_Utilities.php file in library folder if your
app is built with Codelgnitor. Or else you can have this as a general include

class

3. In your application, the function which needs to access the other
application’s function (called app function) is known as calling function.
Inside the calling function, load AR_Utilities library and create an instance.

If you have non CI application make the AR_Utilities var as global.

10

$this->load->library('AR_Utilities');
// Note AR_Utility does not accept any parameter for calling app instantiation
$this->AR_Utilities = new AR _Utilities();

After that assign values to AR_Utilities object's properties as follows,

$this->AR_Utilities->ai_id = <Your Integration Id from AIR grid> ;
$this->AR_Utilities->calling app_user_id = $_SESSION['user_id'];
$this->AR_Utilities->calling app_id = <your app id from UAACS feed>;
$this->AR_Utilities->calling _app_function_id = < calling app function id>;
$this->AR_Utilities->called_app_id = <Id of called app >;
$this->AR_Utilities->debug = <to see debug info true or false>;

Add codes to obtain token information
$token_data = $this->AR_Utilities->request_token($this->AR_Utilities->debug);

Additionally if in case AIR returns an error, it will return as an array which
has 2 array elements. 1 ErrorCode, 2 Error. To handle the errors add error
handling code as shown below,

if(isset($token_data['ErrorCode’'])){
echo 'Error: '.$this->token_data['ErrorCode']." '.$this->token_data['Error'];
exit;

}

Store the token data in a session
$session[“token_data’] = $token_data;
Now add following execution code to get called application output,

$output = $this->AR_Utilities->init call(
true,
$this->AR_Utilities->debug,
$_SESSION['token_data']['token']);

init_call() method in AR_Utilities class accepts 3 parameters. To get the
complete output such as headers/XML/HTML from called application set first
parameter as TRUE. Set it as FALSE to get header messages only. No
HTML/XML content will be returned.

Second parameter is for debug information. If it is set to TRUE it will output
debug information. By default it is set to False.

Third parameter is to accept token. If you supply a valid token init_call will
return outputs. If the token is not valid it will return error messages.

11

9. If you were to pass parameter values or query string values to called
app,you should make it as $GLOBALS variable. Note that all var names
are expected to be in UPPERCASE here.

10. For example if app B (called application) requires CID , TYPE_ID values as
parameters then you need to specify them as follows,

// make CID,TYPE_ID global as follows
$GLOBALS['CID'] = 20;
$GLOBALS['TYPE_ID'] = 345;

//then call init_call();
$output = $this->AR_Utilities->init_call(false,$this->AR_Utilities->debug);

init_call() method is intelligent enough to assign appropriate parameters
and query strings inside its method. Developer has to just call it after
making variables global.

11. After execution $output will contain called application's output. You can
then process it as per your need.

Tip: use var_dump($output) to see what it contains before coding further.

Now that you have set up both called app and calling app functions, it is time to
test the implementation of AIR.

When you call calling app function you should see desired output from called
application method. If you, var dump $output inside calling app method you will

see array elements along with results.

Try testing by giving invalid token or other data to see if you get error messages
correctly.

12

7 How to handle multiple calling app functions in a calling application

There can be few instances that a calling application can have multiple calling app
functions. In a situation like this you can easily overcome this problem by using
multiple session keys to store requested tokens and then implement them with
appropriate calling function.

For example,

Say in a calling application, there are 2 calling functions namely function a()
function b(). Both needs to obtain token from AIR in order to execute called
application functions.

To do this we first create 2 entries in AIR and keep both ids ready to use.

In function a() body we do code as follows.

$this->load->library('AR_Utilities');
$this->AR_Utilities_a = new AR_Utilities();

$this->AR Utilities_a->ai_id = <Your Integration Id from AIR grid> ;
$this->AR _Utilities_a->calling app_user_id = $ SESSION['user_id'];
$this->AR_Utilities_a->calling app_id = <your app id from UAACS feed>;
$this->AR _Utilities_a->calling_app_function_id = < calling app function id>;
$this->AR _Utilities_a->called _app_id = <Id of called app >;
$this->AR_Utilities_a->debug = <to see debug info true or false>;

$token_data_a = $this->AR_Utilities_a->request_token($this->AR_Utilities->debug);
$_SESSION['token_data_a'] = $token_data_a;

if(isset($token_data_a['ErrorCode’])){

echo 'Error: '.$token_data_a['ErrorCode']."' '.$token_data_a['Error'];
exit;
}
$output = $this->AR_Utilities _a->init_call(
true,

$this->AR_Utilities_a->debug,
$_SESSION['token_data_a']['token']);
var_dump ($output);

13

Similarly, in function b() body we do the same code and instead of $token_data_a
we provide a different name for the AIR object.

The main objective is to store sessions in different session ids and use them
appropriately when executing init_call()

14

8 Troubleshooting

In case if you could not see expected output you can troubleshoot by following
steps.

1. Go through this documentation again and double check if the steps are
correctly implemented

2. Set AI_Utiity class’s $debug property to true and see the output to
understand error messages

3. You can then get AIR application's direct URL to check how token issue/
token verification function's outputs. From that you can see what the error
is about.

4. Check your log files to see error messages. If you have not implemented
log object then you should still be able to see it in CI log or in system log

5. Get your AI Id and open up AIR Edit form to see the values, XML feed URLs
and check their data.

6. Check if you get any error codes as output if so then cross check with given
error codes in this documentation. Then make necessary changes.

15

9 Error handling code setup

When it comes to error handling in AIR implemented applications, we have to
receive header messages from called app and we need a mechanism to capture
those header messages at calling app end.

AR__Utility class is already equipped to capture header messages and process it

When calling app calles init_call() method it gets the output from called app if
there is any. Otherwise it gets header messages from called app.

Those header messages then be processed and formatted to present to the user.
So you do not need to handle header messages manually for calling app set up.
But you need to set up header messages for called app function.

Under Steps to setup a function as called app function (called function)

section we have seen how to set up called app function to perform when a AIR
related call is received.

Point no 3 of that section explains how to set up validation error handling as
header messages.

For example following code segment will validate for empty values for actual
start date and actual end date and if they are empty header functions are used to
return error messages,

if(empty($actual_start_date)){
$this->AR _Utilities->header_output(520, 'Actual Start Date cannot be empty');
exit;

telse if(empty($actual_end_date)){
$this->AR_Utilities->header_output(521, 'Actual End Date cannot be empty');
exit;

Similar concept can be used to handle error or notification for your application as
well.

16

10 AIR Error codes

515 - Error: UAACS data feed error! - This error occurs when there is a
problem related to UAACS feed data. This can happen if calling/called app ids are
not valid or supplied share_function XML feed has some errors.

514 - Error: AIR could not fetch details of given calling app id, called app
id and calling app function id! - This error occurs when supplied calling app id,
called app id, and calling app id values are not correct

513 - Error: You do not have access rights to called application! - This
error occurs when the calling app user has no rights over called application and
trying to access it.

512 - Error: Unauthorized called application call! - This error occurs when
invalid called application is trying to use AIR

511 - Error: Unauthorized calling application call! - This error occurs when
invalid calling application is trying to use AIR

510 - Error: Unauthorized server access! - This error occurs when
unauthorized server is trying to access AIR

Error codes of token verification processing

526 - Error: You do not have access permission to called application! -
This error occurs when user has no permission to use called application

525 - Error: No permission! - This error occurs when user has no permission
over called application

524 - Error: Non existing token! - This error occurs when supplied token is
invalid

523 - Error: Unauthorized host! - This error occurs when calling user host is
unknown

522 - Error: Invalid called app! - This error occurs when supplied called
application given is incorrect

17

521 - Error: Invalid calling app! - This error occurs when supplied calling
application given is incorrect

520 - Error: Token was not provided! - This error occurs when the token is
not provided for verification

18

11 About function get_related_ar_links($calling_app_id=0,
$calling_app_function_id=0,
$debug=false)

There can be situations that you may need to fetch all AIR linkages which is created
for a particular calling application. So that you can perform additional tasks or can
create a chain of tasks in one go. This can be achieved by using this function.

This function will return an associative array upon successful retrieval of all related
links.

19

12 How to create share_function.xml feed

A basic share_function.xml should look like this.

<api>

<app_name>(Your application name)</app_name>
<app_id>(Your app UAACS id)</app_id>
<functions>

<function id="(your function id)" name="(your function name)">
<roles>(role, ids, must, be, comma, separated)</roles>
<parameters>
<parameter>
<display_name>(Your function parameter name)</display_name>
<data_type>(Parameter data type)</data_type>
<help text>

(Provide description about this parameter. These help texts

to be shown on AIR integration form. This description should
be informative)

</help_text>
</parameter>
</parameters>

<url>(Your function URL as it appears in form action or as a get URL)</url>
<url_method>(URL method either get or post)</url_method>

<query_string_vars>

<(Your querystring var name)>

<display_name>(query string para name)</display_name>
<data_type>(query string para data type)</data_type>

<help_text>

does etc.)
</help_text>

(Similar to parameter help text. Explain what this query string parameter

<default>(Provide any default values. Use '@@variable_name@@'if you want

to make it dynamic. For more info see below) </default>
<editability>(true/false) </editability >
</(Your querystring var name)>

<(Your querystring var name)>

<display_name>(query string para name 2)</display_name>
<data_type>(query string para name 2 data type)</data_type>

<help_text>(help text about query string para name 3)</help_text>

<default>(provide if any default values)</default>
<editability>(true/false) </editability >

</(Your querystring var name)>

20

</query_string vars>
</function>
</functions>

</api>

21

